Nitric Oxide

Implications of a potential ergogenic aid

Nitric Oxide (NO) is an endogenous free radical and a potent vasodilator in the human body. While it has many clinical applications, interest in NO use as a potential ergogenic aid has increased greatly in recent years. There are now many different types of NO-producing supplements, split into three major categories: arginine, citrulline, and nitrate-based supplementation. Recent literature has yielded mixed results for all three. Arginine-based supplements work in some cases, but have several recurring limitations that question the validity of their conclusions. There is currently no conclusive or decisive evidence to support the claims made regarding arginine or citrulline-based supplements. Nitrate-based supplements taken 2.5 hours prior to aerobic exercise produce positive ergogenic effects such as decreased oxygen consumption and increased exercise tolerance at submaximal and moderate intensities; however, these supplements have no ergogenic effect on highly trained subjects. The amount of nitrate that needs to be consumed to obtain ergogenic effects can be obtained through a meal of 100g of nitrate-rich vegetables such as beetroot, spinach, and lettuce. Considering the unstable nature of nitric oxide, there is also a lack of studies observing the magnitude of protein damage over chronic supplementation. There is also a lack of studies that observed elderly and female populations. Future studies should investigate the effects of chronic supplementation on 3NT levels—a marker of protein damage.

Keywords: nitric oxide, arginine, nitrate, performance, beetroot, ergogenic

INTRODUCTION
Vasodilation is the process by which blood vessels increase in diameter, allowing for an increase in blood flow. Nitric Oxide (NO) is a potent vasodilator which is actively produced by the human body to increase blood flow and decrease blood pressure (Bescos, Sureda, Tur, & Pons, 2012; Larsen et al., 2011; Lundberg et al., 2011). However, NO is an unstable free radical, meaning that it is a compound that has potential to cause cellular damage if it is in high concentrations. This is avoided
because NO is stored in the body as its more stable forms: nitrate (NO$_3^-$) and nitrite (NO$_2^-$) (Hord, Tang, & Bryan, 2009). NO can be safely produced via oral bacterial enzymes that can convert NO$_3^-$ to NO$_2^-$, which can then be converted to NO by a number of other enzymes in the body (Lundberg et al., 2011). The primary method of increasing NO and inducing vasodilation, however, is through the activation of Nitric Oxide Synthases (NOS) located in endothelial cells. With the help of oxygen, NOS convert arginine (Arg), a conditionally essential amino acid (i.e. an amino acid which is sufficiently produced by the body except during times of metabolic stress or illness), to NO and its by-product Citrulline (Cit). NO then diffuses into smooth muscle cells causing changes that lead to smooth muscle vasodilation (Lundberg et al., 2011).

Historically, NO has been widely used in clinical settings because of its vasodilatory effects. NO-induced vasodilation has been shown to help patients with cardiovascular diseases such as coronary atherosclerosis, hypertension, and asthmatic bronchoconstriction (Bryan & Loscalzo, 2009). Interest and research in the field of NO-producing supplementation for sport performance has grown immensely in the past 30 years. Indeed, studies show that people with impaired NO synthesis have poor exercise tolerance (Lauer et al., 2009). The three major forms of NO-producing supplementation include arginine, citrulline, and NO$_3^-$-based supplementation.

ARGININE, CITRULLINE, AND NO$_3^-$ SUPPLEMENTATION

Due to its short half-life (1-2 ms) and its nature as a free radical, simply ingesting or injecting NO is neither a safe nor effective option (Hord, Tang, & Bryan, 2009). As such, to use NO as an ergogenic aid one must find a safe way to increase the bioavailability of NO.

Arginine and citrulline-based supplements work by increasing the amount of substrate (arginine) for NOS, leading to an increase in NO production. As mentioned above, arginine (Arg) is a conditionally essential amino acid and can easily be obtained through diet (Hord, Tang, & Bryan, 2009). Citrulline (Cit) is a non-standard amino acid that can be converted to arginine in the body with the help of several enzymes (Toda, 2008).

Unlike Arg and Cit supplements, NO$_3^-$-based supplements operate independent of NOS. Under exercising conditions, the NO$_3^-$ and NO$_2^-$ in one’s body are naturally converted to NO for use (Bailey, Vanhatalo, Winyard, & Jones, 2012; Bescos, Sureda, Tur, & Pons, 2012; Lundberg et al., 2011). Additional NO$_3^-$ can be naturally found in the diet through dark leafy vegetables and has a half-life of 5-8 hours (Hord, Tang, & Bryan, 2009). About 60% of ingested nitrate is excreted in urine and about 25% gets concentrated in saliva (Lundberg et al. 2011). Spitting out saliva or using antibacterial mouthwash after taking an NO$_3^-$ supplement abolishes the effects of nitrate (Govoni, Jansson, Weitzberg, & Lundberg, 2008; Webb et al., 2008).
Nitric Oxide as an Ergogenic Aid

This paper will explore whether or not these common forms of NO supplementation work, through which mechanisms they might act, and under what conditions.

Arginine-based supplementation

We reviewed 20 studies that used Arg-based supplements and found mixed results. Out of 20 studies, nine claimed the supplement worked while 11 claimed it did not (Appendix, Table 1). However, when we examined these studies, we came across several recurring limitations that must be addressed.

First, many of the Arg supplements reviewed were mixed with other compounds, most of which had their own ergogenic effects. For example, Chen et al. (2010) set out to investigate the effect of chronic L-arg supplementation on moderately trained elderly men (>50yrs) performing a max incremental exercise test. They found no difference in baseline exercise parameters (VO$_2$ or power output), but did find a sustained 16% increase in anaerobic threshold. However, the supplement was mixed with several other compounds including citrulline, vitamin E, and alpha lipoic acid; therefore, the authors could not conclude that the increase in anaerobic threshold was solely due to L-arg. We found that 12 of the 20 Arg studies we reviewed included some form of mixed supplement (Appendix, Table 1). Seven of those 12 studies concluded that Arg supplementation worked as an ergogenic aid. The mixed supplementation casts doubt on the validity of these conclusions.

The second major limitation was that only five out of the 20 studies we reviewed measured NO metabolite levels (NO$_X$, referring to NO$_3$ or NO$_2$ in the body), and only one of those five reported a significant difference in NO$_X$ levels (Bailey et al., 2010). This makes it difficult to know if the results of these studies can be attributed to NO supplementation.

The third limitation is that arginine is involved in several other metabolic pathways. This means it may not always lead to an increase in NO production. This was well illustrated in a prior study conducted by Fricke et al. (2008), which investigated the effect of 18g L-arg on muscle force and power in postmenopausal women. The authors found no increase in maximum grip force, or peak jump force, but did find a significant increase in maximum power in relation to body mass (measured as peak jump force divided by body weight). They concluded that the supplement may have increased maximum force and prevented muscle force decline in postmenopausal women. However, while these authors concluded that Arg supplements can have a positive benefit, they also note NO was likely not the cause of the observed result and stated that increased Arg may not necessarily lead to an increase in NO synthesis. Arg is known to actively participate in the synthesis of creatine (Buford et al., 2007) and L-Arg infusion at rest is known to increase plasma insulin, glucagon, growth hormone, IGF-1, prolactin, and catecholamine.
Nitric Oxide as an Ergogenic Aid

concentrations (McConell, 2007), all compounds that are ergogenic aids in their own right.

It is difficult to isolate the ergogenic effects of Arg-based supplementation to arginine itself. Arg is active in many other pathways and may not always stimulate NO production. Further concerns regarding arginine supplementation include the fact that NOS must compete with arginase enzymes, which use Arg in the urea cycle (Bescos, Sureda, Tur, & Pons, 2012). Arginase activity seems to increase with exercise, which suggests additional arginine will not be converted to NO (Sureda et al., 2006).

Citrulline-based supplementation

Like Arg-based supplements, Cit-based supplements are also NOS dependent; however, unlike Arg, Cit is not a substrate for arginase enzymes. We came across only one Cit-based study that did not use a mixed supplement. Subjects were given an oral L-Cit supplement, and then completed an incremental test to exhaustion on a treadmill (Hickner et al., 2006). Contrary to the author’s hypotheses, treadmill time to exhaustion was 1.5% lower and rate of perceived exertion was found to be higher compared to placebo. In addition, NOX levels were observed to be 7% lower following supplementation, suggesting Cit actually decreased levels of NO production. As a by-product of NO production, it is possible that higher levels of Cit may have suppressed NOS activity.

In light of the findings outlined above and the reported side effects of Arg and Cit-based supplementation (e.g. nausea, vomiting, and diarrhea [Grimble, 2006]), we cannot recommend either as an effective form of NO supplementation.

Nitrate-based supplementation

The three main forms of NO3 supplementation are two pharmaceutical nitrates (NaNO3 and KNO3) and Beetroots Juice (BRJ). We reviewed 27 studies that used one of these forms of NO3-based supplementation. Appendix, Table 2 summarizes each study and Table 3 provides an overall summary of the findings. Like the Arg-based studies, the NO3 studies produced varying results, though 22 out of 27 showed a performance benefit. For example, Wilkerson et al. (2012) revealed that there was a strong negative correlation (r = -0.81) between the change in plasma NO3 levels and the change in performance. This finding provides strong evidence that increased NO in one’s system is related to better performance (lower times) on an aerobic time trial.

Interestingly, recent literature suggests that NO3 can have ergogenic effects in dosage amounts that are comparable to what one may obtain from a meal including 100g of NO3-rich vegetables (Hord, Tang, & Bryan., 2009). Studies also show that the optimal time to take NO3 supplements is 2.5-3 hours prior to exercise in order to obtain the greatest benefit (Webb et al., 2008).
Nitric Oxide as an Ergogenic Aid

Training status
Unlike the Arg-based studies, all NO₃ studies reported an increase in NOₓ levels, regardless of whether or not there was a positive performance effect reported. Interestingly, the studies with the lowest percent increases in NOₓ were among the five studies that did not report any significant ergogenic effect (Bescós et al., 2011; Wilkerson et al., 2012; Peacock et al., 2012). This suggests that the subjects in these studies had a lower response to NO supplementation compared to those in other studies. Further investigation revealed that the subjects of these studies had one trait in common: their training status. VO₂max is a measure that reflects maximal oxygen uptake. A higher VO₂max means that more oxygen can be used during exercise. All subjects in these five studies were classified as highly trained aerobic athletes with VO₂max greater than 60 mL/kg/min. With all other variables being controlled, these athletes did not show any performance enhancement through NO supplementation. This is a previously unreported finding, and we believe this is the single-most-important factor in determining whether or not NO₃ supplementation will have an ergogenic effect. Illustrating this point, a recent study investigated the effect of 6.2mmol of NO₃ consumed 2.5 hours prior to exercise by highly trained athletes, on an 80 km time trial and reported no significant performance benefit (Wilkerson et al., 2012). This is despite having similar experimental protocols as two other studies that reported a benefit from NO₃ supplementation (Lansley et al. 2011; Murphy, Eliot, Heuertz, & Weiss, 2012).

Unlike the mixed supplementation used in Arg-based supplementation studies, NO₃ was shown to be the active ingredient in the three different forms of NO₃ supplementation used in the NO₃ studies that we reviewed. By using KCl and NaCl as placebos, several studies have proved that the observed effects of supplementation were the result of NO₃ alone (Bescós et al., 2012; Bescós et al., 2011; Larsen et al., 2006; Larsen, Weitzberg, Lundberg, & Ekblom, 2010; Larsen, Weitzberg, Lundberg, & Ekblom, 2007). Another recent study was able to isolate the effects of BRJ supplementation to its high NO₃ content and not any other substance (Lansley et al., 2011). BRJ was used as an alternative form of NO₃ supplementation in many studies because of its high NO₃ content (Hord, Tang, & Bryan, 2009) and because of fears surrounding the safety of pharmaceutical NO₃ supplementation (Lundberg, Larsen, & Weitzberg, 2011; Rogers, Vaughan, Davis, & Thomas, 1995). Together, these studies show that NO₃ is the active ingredient in pharmaceutical and dietary nitrate supplementation.

NO₃ limitations
Performance benefits were not consistent across the different nitrate studies reviewed (i.e: some studies reported larger decreases in blood pressure than others). We believe the reason for this is the vastly different methodology used in each study. It is also important to note that a few studies had experimented with NO₃ supplements
Nitric Oxide as an Ergogenic Aid

that had been mixed with other compounds. We did not review these extensively because, like the mixed arginine supplements, it is difficult to attribute mixed supplement effects to NO alone. These mixed compounds include 2-ethyl, GPLC (a carnitine-based supplement), and store-bought NO₃ supplements that were reported to be mixed with over 30 other compounds (Bloomer et al., 2010).

NO₃ controversies
There have been several controversies surrounding the use of NO₃ supplements. Of minor concern is that subjects who supplemented with BRJ also reported minor side effects such as Beeturia and red stools (Bailey et al., 2010a; Bailey et al., 2010b; Vanhatalo et al., 2010; Webb et al., 2008). The most significant controversy is concerned with the use of pharmaceutical NO₃. Due to health and ethical concerns, human supplementation with pharmaceutical NO₃ was not allowed in the United Kingdom (Jones et al., 2011). As such, UK-based studies used BRJ as an NO₃ supplement (Bailey, Vanhatalo, Winyard, & Jones, 2012). However, it has been observed that the lethal oral dose of NO₃ in humans is around 330 mg/kg body weight (European Food Safety Authority, 2008). Thus, while the dosages used in the studies reviewed were well above the WHO recommended Adequate Daily Intake (ADI) of 0–3.7 mg/kg or about 0–0.06mmol/kg (Hord, Tang, & Bryan, 2009), they are also significantly below what may be considered a lethal dosage. Some researchers have claimed, however, that even at low levels NO₃ could be dangerous, and they have warned against its uncontrolled use (e.g. Lundberg, Larsen, & Weitzberg, 2011). This claim was tested in a 2012 study that examined cell damage after NO₃ supplementation in highly trained athletes and found no significant changes over three days (Bescós et al., 2012). This study concluded that acute supplementation of NaNO₃ was safe for humans if consumed alongside dietary nitrate. Therefore, the concerns surrounding NO₃ use as an ergogenic may not be applicable in all situations.

SUMMARY OF FINDINGS AND DISCUSSION
NO supplements are increasingly being used by recreational athletes as an ergogenic aid, but little is currently known about the nature of these supplements. After reviewing recent literature, several conclusions and inferences may be made. Arg and Cit supplements that use endogenous NOS to convert Arg to NO have yielded inconsistent results and there are no consistent data from which to make any reliable conclusions.

NO₃-based supplements show the most promise. There is a strong correlation between the change in plasma NO₂ levels and a change in performance. These supplements have been shown to work across a large range of aerobic exercise modalities.
Nitric Oxide as an Ergogenic Aid

Importantly for experimental control, NO$_3$ is the only active ingredient in NaNO$_3$, KNO$_3$, and BRJ, the three most common forms of NO$_3$-based supplementation. While all NO$_3$ supplements are shown to exert their effect by increasing NO, this increase is dependent on the training status of the individual. Highly trained athletes have the lowest-percent increases post-ingestion and are not likely to gain any performance benefit from the additional NO$_3$.

There have been warnings that ingesting pharmaceutical NO$_3$ can lead to protein damage or cancer (Rogers, Vaughan, Davis, & Thomas, 1995). Despite such fears, NaNO$_3$ supplements, if taken safely with dietary nitrate, do not cause any significant protein damage over an acute dosage period.

SUGGESTIONS FOR FUTURE RESEARCH

Chronic exercise has also been shown to increase NOS expression in dogs (Sessa et al., 1994) and to increase NO production in hypercholesterolemic patients (Lewis, Dart, Chin-Dusting, & Kingwell, 1999). It is possible that chronic exercise training over a lifetime may increase NOS expression in human subjects to the point where NO$_3$ supplementation is no longer effective, which may be the case with highly trained athletes. This has potential implications for elderly populations, who are known to have decreased levels of NO production (Goubareva et al., 2007).

In addition, excessive NO production is dangerous because of its capacity for protein damage. Indeed, the dosages used in the studies reviewed were far in excess of those recommended by the WHO (Hord, Tang, & Bryan, 2009). A recent study proved that acute supplementation of NaNO$_3$ with dietary nitrate does not result in protein damage, reflected in 3NT levels (Bescós et al., 2012); there are, however, no studies that have examined 3NT levels with chronic (>5 days) supplementation. Therefore, future studies should examine the effects of chronic exercise on NOS expression, the effects of NO$_3$ supplementation in elderly populations, and 3NT levels over chronic supplementation periods.

CONCLUSION

After reviewing all the pertinent literature, the claim can be made that NO$_3$ supplements can help to improve aerobic exercise tolerance and performance in young, moderately trained men and are not suitable for highly trained endurance athletes. Arg and Cit-based supplements are not recommended. Rather than buying a supplement, however, it is recommended that individuals interested in NO$_3$ supplementation should consume about 100g worth of NO$_3$-rich vegetables 2.5-3 hours before exercise. One would receive the same amount of NO$_3$ as the subjects in most of the studies reviewed and save a considerable amount of money.
Nitric Oxide as an Ergogenic Aid

REFERENCES

Nitric Oxide as an Ergogenic Aid

Brevue Review 2.1

21 | Revue YOUR Review 2.1
Nitric Oxide as an Ergogenic Aid

Table 1. Side by Side Comparison and Summary of Studies Using Arginine or Citrulline Supplementation.

<table>
<thead>
<tr>
<th>Study Author & Year</th>
<th>Study Design</th>
<th>Subjects (number, gender, wt, VO2max)</th>
<th>Supplement</th>
<th>Dose & Duration</th>
<th>Significant Physiological Results</th>
<th>Significant Performance Results (%)</th>
<th>Worked as an Aid</th>
<th>Measured NOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevens et al., 2000</td>
<td>r, db, co</td>
<td>13 m</td>
<td>L-Arg + GaKic</td>
<td>11.2g for 23 d</td>
<td>none reported</td>
<td>↑ FRI (28%), ↑ Muscle work (0.8%)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Buford et al., 2004</td>
<td>r, db, pl</td>
<td>10 m</td>
<td>L-Arg + GaKic</td>
<td>11.2g for 1 d</td>
<td>↑ [L-Arg]</td>
<td>↓ change in peak muscle output</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Campbell et al., 2006</td>
<td>1) r, db, c</td>
<td>1) 10 m</td>
<td>L-Arg + AAKG</td>
<td>1) 4g for 1 d</td>
<td>none reported</td>
<td>2) ↑1RM bench press, ↑ peak power output</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Matsumoto et al., 2007</td>
<td>r, db, pl, co</td>
<td>8 m (72.6 ± 3.9kg)</td>
<td>L-Arg + BCAA</td>
<td>2.5 g for 1 d</td>
<td>↑[plasma BCAA], ↑ Phenylalanine release from the leg</td>
<td>none reported</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Little et al., 2008</td>
<td>r, db</td>
<td>35 m</td>
<td>L-Arg + AAKG + Cr</td>
<td>0.175g for 10 d</td>
<td>none reported</td>
<td>↑ Bench-press repetitions (12.4%), ↑ Peak power (7.1%)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fricke et al., 2008</td>
<td>r, db</td>
<td>23 f (>50y)</td>
<td>L-Arg + HCL</td>
<td>18g for 180 d</td>
<td>none reported</td>
<td>↑ peak jump force</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Bailey et al., 2010</td>
<td>r, db, co</td>
<td>9 m</td>
<td>L-Arg + Vitamins + Amino acids</td>
<td>6 g for 3d</td>
<td>↑ NOX, ↓7% SBP</td>
<td>↑ TIE, ↓VO2</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Camic et al., 2010</td>
<td>r, db, parallel</td>
<td>50 m</td>
<td>L-Arg + GSA</td>
<td>1.5g or 3g for 21 d</td>
<td>none reported</td>
<td>↓GET (4.1%)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Chen et al., 2010</td>
<td>r, db, pl, ce, MI</td>
<td>21 mo (>50y), VO2max=3.71 ± 0.34 l/min</td>
<td>L-Arg + L-Cit + antioxidants + ViE + 65l acid</td>
<td>5.2g for 21 d</td>
<td>none reported</td>
<td>↑ anaerobic threshold (16.7%)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Denis et al., 1991</td>
<td>r, db, co, ce</td>
<td>15 ml (61 kg)</td>
<td>L-Arg + L-asp</td>
<td>5 g for 10 d</td>
<td>↓[plasma NH4]</td>
<td>none reported</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Eto et al., 1994</td>
<td>ce</td>
<td>3 m</td>
<td>L-Arg + L-asp</td>
<td>24 g for 1 d</td>
<td>↓[plasma NH3]</td>
<td>none reported</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Colombani et al., 1999</td>
<td>r, db</td>
<td>14 m</td>
<td>L-Arg + L-as</td>
<td>15g for 28 d</td>
<td>↑[glucagon], ↑ urea, ↑ L-Arg]</td>
<td>none reported</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Schaefer et al., 2002</td>
<td>r, db, cl, co</td>
<td>8 m</td>
<td>L-Arg</td>
<td>3 g for 1 d</td>
<td>↓[L-acc], ↑[L-Cit]</td>
<td>none reported</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Authors</td>
<td>Design</td>
<td>Duration</td>
<td>Treatment</td>
<td>Dose</td>
<td>NOX</td>
<td>VO2peak</td>
<td>VO2max</td>
<td>PO</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>Abel et al., 2005</td>
<td>r, pl, ce, MI</td>
<td>30 m (74kg)</td>
<td>L-Arg + L-aspartate</td>
<td>5.7±8.7g for 28 d</td>
<td>none reported</td>
<td>none reported</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Burscher et al., 2005</td>
<td>r, db, pl, ce, MI</td>
<td>16 m (72.5 ± 6.5kg)</td>
<td>L-Arg + L-aspartate</td>
<td>3g for 21 d</td>
<td>↓ [bLac]</td>
<td>↓ VO2, ↓ VCO2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>McConnell et al., 2006</td>
<td>r, db, co</td>
<td>9 m</td>
<td>L-Arg + HCL</td>
<td>30g for 1 day</td>
<td>↓ [blood glucose]</td>
<td>none reported</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Liu et al., 2008</td>
<td>r, db, co</td>
<td>10 m</td>
<td>L-Arg</td>
<td>6g for 3 d</td>
<td>none reported</td>
<td>none reported</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bescós et al., 2009</td>
<td>r</td>
<td>9 m (67.7 ± 8.7kg)</td>
<td>L-Arg</td>
<td>5.5 ± 0.3g for 3 d</td>
<td>↓ [bLac]</td>
<td>none reported</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tsai et al., 2009</td>
<td>r, pl</td>
<td>12 m (75.75 kg)</td>
<td>L-Arg</td>
<td>7.5 g for 1 d</td>
<td>↑ [BG], ↑ [insulin]+ ↓ [blood FFA]</td>
<td>none reported</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Koppo et al., 2009</td>
<td>r, db, co, ce</td>
<td>7, VO2peak=52.0 ± 4.8 mL/kgm</td>
<td>L-Arg</td>
<td>6 g for 14 d</td>
<td>↑ [serum L-Arg]</td>
<td>↑ phase 2 VO2 (12%)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hickner et al., 2006</td>
<td>r, pl, db, cb</td>
<td>17 m/f, VO2max = 52.1 ± 1.9</td>
<td>L-Cit</td>
<td>3g or 9g (3x3) for 1 d</td>
<td>↓ NOX (7%)</td>
<td>↓ time to exhaustion (1.5%), ↑ RPE</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Legend. r=randomized, pl=Placebo-Controlled, co=crossover, db=double blind, ol=open-label, rm=repeated measures, cb=counterbalanced, GaKic=glycine-arginine-alpha ketoisocaproic acid, AAKG=alpha ketogluterate, L-aspartate, L-glutamate, ce=cycle ergometer used, T=treadmill used, TT=Time trial, DT=Distance Trial, LI=low intensity, MI=moderate intensity, SI=Severe Intensity, GE=gross efficiency, GET=gross exchange threshold, L-Arg=L-Arginine, NOX=nitric oxide metabolites (NO2 and NO3), VO2=Oxygen uptake, PO=power output, TTE=Time to exhaustion, TTC=Time to completion, BG=Blood Glucose, BI=Blood Insulin
<table>
<thead>
<tr>
<th>Study Author & year</th>
<th>Study design</th>
<th>Exercise Modality</th>
<th>Subjects (number, gender, wt, VO2max)</th>
<th>Dosage & Dosage duration</th>
<th>Dose Timing</th>
<th>Physiological Results</th>
<th>Performance Results (%)</th>
<th>Worked as an Aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bescós et al., 2012</td>
<td>r, db, co</td>
<td>40min cycling DT (91% Hrmax)</td>
<td>13 m, (72.4 ± 9.7 kg), VO2max = 60 ± 7 mL/kg/min</td>
<td>11.6 mmol NaNO3 for 3 d</td>
<td>3 h</td>
<td>↑ NO2 (78%), ↑ET-1</td>
<td>DNI</td>
<td>N</td>
</tr>
<tr>
<td>Bescós et al., 2011</td>
<td>R, db, co</td>
<td>Four 6-min submax cycling (2-3.5W/kg) and one IT to exhaustion</td>
<td>11 m (73.3 ± 5.6 kg), VO2peak = 65.1 ± 6.2 mL/kg/min</td>
<td>11.8 mmol NaNO3 for 1 d</td>
<td>3 h</td>
<td>↑ NO3 (16%)</td>
<td>↓ VO2 2.9% at RCP SI</td>
<td>N</td>
</tr>
<tr>
<td>Wilkerson et al., 2012</td>
<td>R, sb, co</td>
<td>80km cycling TT at 75% VO2max</td>
<td>8 m (79 ± 9 kg), VO2peak= 63 ± 8 mL/kg/min</td>
<td>6.2 mmol BRJ for 7d</td>
<td>2.5 h</td>
<td>↑ NO2 (25%), ↓BP</td>
<td>↓ TTC (0.8%) but was NS</td>
<td>N</td>
</tr>
<tr>
<td>Peacock et al., 2012</td>
<td>r, db</td>
<td>LI cycle exercise (55-75% Vomax)</td>
<td>10 m (74 ± 8 kg), VO2peak= 69.6 ± 5.1 mL/kg/min</td>
<td>9.9 mmol KNO3 for 1 d</td>
<td>2.5 h</td>
<td>↑ NO2 (127%)</td>
<td>DNI oxygen cost</td>
<td>N</td>
</tr>
<tr>
<td>Christensen et al., 2013</td>
<td>R, sb, co</td>
<td>O2 kinetics (3 x 6min at 298W), 400 kcal TT and repeated sprint capacity (6x20 s sprints)</td>
<td>10 m (69 ± 8 kg), VO2peak= 72.1 ± 4.5 mL/kg/min</td>
<td>8 mmol BRJ for 6d</td>
<td>3 h</td>
<td>↑ NO2 (Day 4 = 258%, Day 6 = 298%)</td>
<td>DNI VO2 kinetics</td>
<td>N</td>
</tr>
<tr>
<td>Larsen et al., 2006</td>
<td>R, db, co</td>
<td>no exercise</td>
<td>17 m/f</td>
<td>0.1 mmol/kg NaNO3 for 1 d</td>
<td>n/a</td>
<td>↑ NO2 (59%), ↓DBP</td>
<td>No exercise</td>
<td>Y</td>
</tr>
<tr>
<td>Larsen et al., 2007</td>
<td>R, db, co</td>
<td>5 minutes cycling at work rates equivalent to 45 - 100% VO2peak</td>
<td>9 m, VO2peak= 55 ± 3.7 mL/kg/min</td>
<td>0.1 mmol/kg NaNO3 for 3 d</td>
<td>1 h</td>
<td>↑ NO2 (82%), ↓SBP (6.7%)</td>
<td>↓ submax VO2↑GE (6.6%),</td>
<td>Y</td>
</tr>
<tr>
<td>Webb et al., 2008</td>
<td>ol, co</td>
<td>no exercise</td>
<td>14 m/f</td>
<td>6.2 mmol BRJ for 1 d</td>
<td>0.5 h</td>
<td>↑ NO2 (100%), ↓SBP(8%), ↓DBP(10%)</td>
<td>No exercise</td>
<td>Y</td>
</tr>
<tr>
<td>Bailey et al., 2009</td>
<td>R, pc, co</td>
<td>4 MI (80%GET) and 2 SI (70%D) ce tests</td>
<td>8 m, (82 ± 6 kg) VO2peak = 49 ± 5 mL/kg/min</td>
<td>5.5 mmol BRJ for 6 d</td>
<td>sipped throughout the day</td>
<td>↑ NO2 (96%), ↓SBP, ↑[Hbtot], ↑[HbO2], ↓[HHb]</td>
<td>↓ O2 amplitude during MI, ↓VO2 slow component during SI, ↑TTF (16%) during SI</td>
<td>Y</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>DB</td>
<td>Gender</td>
<td>Exercise</td>
<td>Duration</td>
<td>Intake</td>
<td>VO2max</td>
<td>Changes</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>----</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Larsen et al., 2010</td>
<td>R, d, co</td>
<td>LI cycle exercise, combined arm and leg cycle IT, 80rpm</td>
<td>7m, 2L, VO2max = 3.72 ± 0.33 L/min</td>
<td>0.1 mmol/kg NaNO3 for 3 d</td>
<td>40 mins</td>
<td>↑ NO2 (133%), ↑ in plasma cGMP</td>
<td>↓ TTE during SI, ↓ VO2max (5.8%) during LL</td>
<td></td>
</tr>
<tr>
<td>Bailey et al., 2010</td>
<td>R, d, co</td>
<td>6 LI (15%MVC) and 3 HI (30%MVC) two-legged knee extensor exercise</td>
<td>7m, (81 ± 7 kg)</td>
<td>5.1 mmol BRJ for 6 d</td>
<td>n/a</td>
<td>↑ NO2 137%, ↓ SBP 4%, ↓ DBP, ↓ MAP 2%, ↓ muscle ATP turnover, ↓ muscle ADP accumulation, ↓ muscle Pi accumulation, ↓ muscle PCr depletion</td>
<td>↓ VO2 10.6% during LI, ↓ VO2 13.7% during HI, ↑ TTF 25%, ↓ muscle ATP turnover rate, ↓ muscle ADP accumulation, ↓ muscle Pi accumulation, ↓ muscle PCr depletion</td>
<td></td>
</tr>
<tr>
<td>Kapil et al., 2010</td>
<td>1) d, co 2) ol, co 3) ol, co</td>
<td>no exercise</td>
<td>1) 6 2) 20 3) 9</td>
<td>1) 4, 12 2) 24 mmol KNO3 3) 5.5 mmol of BRJ for 1 d</td>
<td>n/a</td>
<td>↑ NO2 (30-300%), No exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanhatalo et al., 2010</td>
<td>R, b, co</td>
<td>2 bouts of MI (90%GET) and 1 IT to exhaustion</td>
<td>8 mL (71.8 ± 11.5 kg), VO2 47 ± 8 mL/kg/min</td>
<td>5.2 mmol BRJ for 15 d</td>
<td>2.5 h</td>
<td>↑ NO2 (Day 1 = 39%, Day 5 = 25%, Day 15 = 40%), ↑ SBP, ↑ MAP</td>
<td>↓ VO2 3.6% on d1, 4.0% on d3, 4.2% on d15, ↓ VO2 amplitude during MI, After 15 days: ↑ W 2.5%, ↑ Peak Work Rate in IT, ↑ GET Work rate</td>
<td></td>
</tr>
<tr>
<td>Larsen et al., 2011</td>
<td>R, d, co</td>
<td>LI cycle exercise, 60-70rpm</td>
<td>14m (70 ± 2 kg), VO2 5b ± 3 mL/kg/min</td>
<td>7mmol NaNO3 for 3 d</td>
<td>1.5 h</td>
<td>↑ NO2 (526%)</td>
<td>↓ O2 consumption (3%) during LI exercise, ↑ mitochondrial P/O ratio (19%)</td>
<td></td>
</tr>
<tr>
<td>Lansky et al., 2011a</td>
<td>R, d, co</td>
<td>4- and 16.1-km cycling TT</td>
<td>9 m (69.3 ± 7.2 kg), VO2 56 ± 6 mL/kg/min</td>
<td>6.2 mmol BRJ for 1 d</td>
<td>2.75 h</td>
<td>↑ NO2 (138%), ↓ SBP (5%)</td>
<td>↑ POVO2 7%, ↓ TTC (2.7-2.8%)</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R: Randomized, db: Double-blinded, co: Cross-over
- LL: Low Load, SI: Submaximal INT, LL: Low Load, MI: Moderate Intensity
- BRJ: Beta-arginine
- NO2: Nitric oxide
- VO2: Oxygen uptake
- TTE: Time to exhaustion
- SBP: Systolic blood pressure
- DBP: Diastolic blood pressure
- MAP: Mean arterial pressure
- W: Work output
- GET: General Exercise Test
- TTC: Total time to completion
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Dosage</th>
<th>Protocol</th>
<th>Dosage</th>
<th>Variable Changes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lansky et al., 2011b</td>
<td>R, db, co</td>
<td>6.2 mmol BRJ for 6 d</td>
<td>4 MI (80%GET) and 2 SI (70%) tests</td>
<td>6.2 mmol BRJ for 6 d</td>
<td>↑ NO₂ (105%), ↓ SBP (4%)</td>
<td>Y</td>
</tr>
<tr>
<td>Kenjale et al., 2011</td>
<td>R, ol, co</td>
<td>6.2 mmol NaNO₃ for 1 d</td>
<td>CPX incremental test to exhaustion</td>
<td>6.2 mmol NaNO₃ for 1 d</td>
<td>↑ NO₂ (520%), ↑ [Hbtot], ↑ [HbO₂], ↓ [HHb], ↓ VO₂, ↑ TTE (17%)</td>
<td>Y</td>
</tr>
<tr>
<td>Bahra et al., 2012</td>
<td>R, db, co</td>
<td>8 mmol KNO₃ for 1 d</td>
<td>no exercise</td>
<td>8 mmol KNO₃ for 1 d</td>
<td>↑ NO₂ (75%), ↓ SBP 3.6%</td>
<td>Y</td>
</tr>
<tr>
<td>Cermak et al., 2012</td>
<td>R, rm, co</td>
<td>12 mmol KNO₃ for 6 d</td>
<td>10km TT at LI and MI (45% and 65% of Wmax)</td>
<td>8 mmol BRJ for 6 d</td>
<td>↑ NO₂ (1900%), ↓ TT completion time (1.2%), ↑ PO (2.1%), ↓ VO₂ (3.5-5.1%)</td>
<td>Y</td>
</tr>
<tr>
<td>Murphy et al., 2012</td>
<td>db, co</td>
<td>8 mmol BR for 1 d</td>
<td>5km TT</td>
<td>8 mmol BR for 1 d</td>
<td>DNM NO₃, ↑ running velocity (5%)</td>
<td>Y</td>
</tr>
<tr>
<td>Wylie et al., 2013</td>
<td>R, db, co</td>
<td>28.7 mmol for 1 d</td>
<td>YoYo HI intermittent cycling test</td>
<td>28.7 mmol for 1 d</td>
<td>↑ NO₂ (395%), ↓ blood [glucose], ↑ Performance in the Yo-Yo IR1 by 4.2%</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend: R=randomized, pl=Placebo-Controlled, co=crossover, db=double blind, sb=single blind, ol=open-label, rm=repeated measures, ce=cycle ergometer used, TT=Time trial, DT=Distance Trial, LI=Low intensity, MI=Moderate intensity, SI=Severe Intensity, IT=Incremental exercise, GE=gross efficiency, GET=gas exchange threshold, NaNO₃=Sodium nitrate, KNO₃=Potassium Nitrate, BRJ=Beetroot juice, BR=Beetroot, RCP=respiratory compensation point, NOX=nitric oxide metabolites (NO₂ and NO₃), NO₃=nitrate, NO₂=nitrite, ET-1=Endothelin-1, VO₂=Oxygen uptake, PO=power output, TTE=Time to exhaustion, TTC=Time to completion, DNI=did not improve, DNM=Did not Measure, Dosage: BRJ NO₃ dosage assumed to be 6.2mmol per 0.5L unless stated otherwise 10mg/kg NO₃ = 0.161mmol/kg
Table 3. Summary of Results for Studies on the Ergogenic Effects of Nitrate Supplementation.

<table>
<thead>
<tr>
<th>Physiological results</th>
<th>Performance-related results</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9-14% decrease in VO₂</td>
<td>1.2% decrease in TTC</td>
</tr>
<tr>
<td>22-526% increase in NOₓ</td>
<td>15-25% increase in TTF and TTE</td>
</tr>
<tr>
<td>3.6-7.8% decrease in SBP</td>
<td>2.1-2.5% increase in W and PO</td>
</tr>
<tr>
<td>10% decrease in DBP</td>
<td>5% increase in running velocity</td>
</tr>
<tr>
<td>2% decrease in MAP</td>
<td></td>
</tr>
</tbody>
</table>